Product line upA PhotoRelays is a semiconductor relay with an LED as an input and MOSFET as an output. |
Compared with Electro-Mechanical Relays have moving contact: | Compared with SSR (Solid State Relays) have phototriac for output: |
---|---|
●Longer lifetime (No limit on mechanical and electrical lifetime) ●Higher-speed and high-frequency switching ●Higher sensitivity (less power consumption) ●Smaller size ●Less contact problems such as arcs, bounce, and noise ●More resistant to vibration and impact ●No limitation for the mounting direction | ●Able to control miniature analog signal ●Applicable to both AC/DC ●More sensibility ●Less leakage current ●Lower offset voltage ●Various contact structures such as 2a, 4a, 1b, 2b, and 1a1b in addition to 1a |
1.Technical Terminology
2.Reliability tests
Term | Symbol | Description | |
Input | LED forward current | IF | Current that flows between the input terminals when the input diode is forward biased. |
LED reverse voltage | VR | Reverse breakdown voltage between the input terminals. | |
Peak forward current | IFP | Maximum instantaneous value of the forward current. | |
LED operate current | IFon | Current when the output switches on (by increasing the LED current) with a designated supply voltage and load connected between the output terminals. | |
LED turn off current | IFoff | Current when the output switches off (by decreasing the LED current) after operating the device with a designated supply voltage and load connected between the output terminals. | |
LED dropout voltage | VF | Dropout voltage between the input terminals due to forward current. | |
Power dissipation | Pin | Allowable power dissipation between the input terminals. | |
Output | Load voltage | VL | Supply voltage range at the output used to normally operate the PhotoRelays. Represents the peak value for AC voltages. |
Continuous load current | IL | Maximum current value that flows continuously between the output terminals of the PhotoRelays under designated ambient temperature conditions. Represents the peak value for AC current. | |
On resistance | Ron | Obtained using the equation below from dropout voltage VDS (on) between the output terminals (when a designated LED current is made to flow through the input terminals and the designated load current through the output terminals.) Ron = VDS (on)/IL | |
Off state leakage current | ILeak | Current flowing to the output when a designated supply voltage is applied between the output terminals with no LED current flow. | |
Power dissipation | Pout | Allowable power dissipation between the output terminals. | |
Open-circuit output voltage | Voc | Voltage required for driving a MOSFET | |
Short-circuit current | Isc | Current that is output from the driver when the input is turned on | |
Electrical characteristics | Turn on time | Ton | Delay time until the output switches on after a designated LED current is made to flow through the input terminals. |
Turn off time | Toff | Delay time until the output switches off after the designated LED current flowing through the input terminals is cut off. | |
I/O capacitance | Ciso | Capacitance between the input and output terminals. | |
Output capacitance | Cout | Capacitance between output terminals when LED current does not flow. | |
I/O isolation resistance | Riso | Resistance between terminals (input and output) when a specified voltage is applied between the input and output terminals. | |
Total power dissipation | PT | Allowable power dissipation in the entire circuit between the input and output terminals. | |
I/O isolation voltage | Viso | Critical value before dielectric breakdown occurs, when a high voltage is applied for 1 minute between the same terminals where the I/O isolation resistance is measured. | |
Ambient temperature | Operating | Topr | Ambient temperature range in which the PhotoRelays can operate normally with a designated load current conditions. |
Storage | Tstg | Ambient temperature range in which the PhotoRelays can be stored without applying voltage. | |
Max. operating frequency | — | Max. operating frequency at which a PhotoRelays can operate normally when applying the specified pulse input to the input terminal |
Classification | Item | Condition | Purpose |
Life tests | High temperature storage test | Tstg (Max.) | Determines resistance to long term storage at high temperature. |
Low temperature storage test | Tstg (Min.) | Determines resistance to long term storage at low temperature. | |
High temperature and high humidity storage test | 85°C 185°F, 85%R.H. | Determines resistance to long term storage at high temperature and high humidity. | |
Continuous operation life test | VL = Max., IL = Max., IF = Recommended LED forward current | Determines resistance to electrical stress (voltage and current). | |
Thermal environment tests | Temperature cycling test | Low storage temperature (Tstg Min.) High storage temperature (TstgMax.) | Determines resistance to exposure to both low temperatures and high temperatures. |
Thermal shock test | Low temperature (0°C) (32°F), High temperature (100°C) (212°F) | Determines resistance to exposure to sudden changes in temperature. | |
Solder burning resistance | 260±5°C 500±41°F, 10 s | Determines resistance to thermal stress occurring while soldering. | |
Mechanical environment tests | Vibration test | 196 m/s2 {20 G}, 100 to 2,000 Hz*1 | Determines the resistance to vibration sustained during shipment or operation. |
Shock test | 9,800 m/s2 {1,000 G} 0.5 ms*2; 4,900 m/s2 {500 G} 1 ms | Determines the mechanical and structural resistance to shock. | |
Terminal strength test | Determined from terminal shape and cross section | Determines the resistance to external force on the terminals of the PhotoRelays mounted on the PC board while wiring or operating. | |
Solderability | 245°C 473°F 3 s (with soldering flux) | Evaluates the solderability of the terminals. |