点击QQ请与我交谈!

APSEMI
先进光半导体

产品编号检索/替代型号参数查询
先进光半导体
  • ------热电堆温度传感器
    TO46 封装
    TO39 封装
  • ------通用型光耦继电器
  • 1路常开及2路常开1a2a
    0~80V
    0~180mA
    200~900mA
    1000~2000mA
    2100~5000mA
    100~250V
    0~180mA
    200~900mA
    1000~2000mA
    2100~5000mA
    300~400V
    0~90mA
    100~180mA
    200~500mA
    600~800V
    0~90mA
    100~180mA
    200~600mA
    1000~1500V
    20~100mA
  • 1路常闭及2路常闭1b2b
    0~80V
    0~180mA
    200~900mA
    1000~2000mA
    2100~5000mA
    100~250V
    0~180mA
    200~900mA
    1000~2000mA
    2100~5000mA
    300~400V
    0~90mA
    100~180mA
    200~600mA
    600~800V
    0~90mA
    100~180mA
    200~600mA
  • 常开常闭双路触点1a1b
    0~60V
    100~500mA
    1000~2000mA
    200~250V
    100~250mA
    350~400V
    50~90mA
    100~200mA
    600V
  • ---低阻值、低电容
  • ---增强隔离 3.75kVrms
  • ------固态继电器光耦
    APH0213/0223
    APH1213/1223
    APH2213/2223
    APH3213/3223
    APH4213/4223
  • ------高速通信光耦
    APPL-2503/30/31
    APPL-2601/11/30/31
    APPL-M501/601/70
    APPL-0501/0601/063L
    APPL-4502/03/04
    6N135
    6N136
    6N137
    6N138
    6N139
  • ------常用型光耦
    双向可控硅光耦
    MOC3020/21/22/23
    MOC3041/42/43
    MOC3051/52/53
    MOC3061/62/63
    MOC3081/82/83
    晶体管光耦
    APC814/816/817
    APC824/826/827
    APC214/224/217/227/244/247
    APC354/356/357/358
    APC1001/02/04/06/08
    4N25/26/27/28/35/37
    光伏光耦
    APLP-190/191
    APLP-3902/3904/3905/3906
    隔离放大器光耦
    IGBT驱动光耦
    MOSFET光耦
    IPM光耦合器
    光纤耦合器
光耦继电器相关知识
05/14
2021

   继电器    将一个小的电输入转换成一个大的电流输出不是一件容易的事,但是这项任务对于有效地操作各种标准电器和车辆是必要的。许多电路通过继电器实现这些转换,继电器在各种电子设备中都是不可缺少的。    什么是中间继电器?    继电器是一种电子开关,利用电磁原理将小的电刺激转化为大电流。这些转换发生在电输入激活电磁铁形成或断开现有电路时。通过利用微弱的输入为更强的电流供电,继电器有效...

05/11
2021

   AQV258H5系列HE1型高压光电管®继电器    松下的光耦继电器采用DIP6封装,用于高压控制,是工业电池监测系统(BMS)的理想选择。松下的AQV258H5系列HE1Forma型PHOMOS®继电器提供1500伏高压。这些继...

05/10
2021

   1、使用光耦    1.光耦继电器的CTR允许范围为50%-200%。这是因为当点击率为“50%”时,光耦中的LED需要更高的工作电流(如果为“5.0mA”),才能正常控制单片开关电源IC的占空比,这将增加光耦合器的功耗。当CTR>...

05/07
2021

   光耦继电器是什么?    光耦合继电器是包含MOSFET的光耦合LED的一种光耦。光继器指发光装置和受光装置。    与机械继电器相比,光耦继电器有许多优点,如寿命长、驱动电流小等。迅速反应适用范围广泛,适用于微弱信号和模拟信号开关...

05/06
2021

   光耦继电器和机械继电器有什么不同点!    一、光耦介绍    光耦继电器亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。当输入...

04/30
2021

   光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱...

04/29
2021

   一种新型高压光电继电器,其特征在于:输入端由红外LED二极管构成,输入端pin2连接红外LED二极管的“+”极、pin1连接红外LED二极管的极、pin3,输入端的pin4与内置多个串联级光电二极管PVG集成,输出端pin5、pin...

04/28
2021

   光耦继电器可以用各种不同的名称来描述,包括光隔离器和光耦合器。    基本上,光耦合器是一种半导体器件,它使用短光路或链路将信号从一个电路耦合到另一个电路,同时提供电气隔离。光电耦合器或光耦合器通常包含在单个封装中,通常约为集成电路...

04/28
2021

   用于控制高压/大功率设备的设备需要在其高压输出和低压输入之间具有良好的电气绝缘。在这种情况下,依靠一层氧化硅、几个原子厚来提供所需的绝缘层并不是一个真正的选择。当故障发生时(在大功率电路中更可能发生),其结果可能是灾难性的,不仅对电...

04/26
2021

   也许“PhotoMOS”这个名字很容易让你想起电子半导体元件,而PhotoMOS实际上是一个半导体元件。简言之,PhotoMOS是一种半导体继电器,包含作为输入元件的LED和作为输出元件的MOSFET。    从历史上看,机械继电器...

04/25
2021

   固态继电器是一种非接触式电子开关,由分立元件、薄膜固定电阻网络和芯片组成。采用混合工艺组装,实现控制电路(输入电路)和负载电路(输出电路)之间的电气隔离和信号耦合。固态器件实现了负载的开关功能,内部没有运动部件。虽然市场上固态继电器...

04/23
2021

   实际上,光耦继电器电路的设计并不像人们想象的那么困难。就像你在设计BJT电路一样。如果一个BJT有它的β或电流增益,光耦有它的CTR或电流传输比。一旦你知道了CTR是什么,并学会了如何使用它,那么光耦电路设计就是那么简单。    电...

04/22
2021

   使用半导体的无触点继电器,可实现高速和高频操作。欧姆龙为各种应用提供固态继电器。    SSRs与机械继电器的区别!    固态继电器没有可移动触点。SSR在操作上与具有可移动触点的机械继电器差别不大。然而,固态继电器采用半导体开关...

04/21
2021

   光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合...

04/20
2021

   光耦合器是以光为媒介传输电信号的一种电一光一电转换器件。它以光作为媒介把输入端的电信号转换为光信号,耦合到输出端再转换为电信号,因此称为光耦合器。由于光耦合器输入、输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力...

04/20
2021

   光耦继电器它有哪些优点呢?    每一种大型的用电器,例如冰箱、电视机以及家用电器等等,它们内部其实由很多电器元件组成的,互相之间配合工作,共同维持用电器的正常使用。光耦继电器就是其中一个很重要的元件,它在电路中的作用不容小视。那么...

04/19
2021

   为什么在电路中使用光耦继电器?    需要电气隔离。信号传输在A和B电路之间进行,但在两个电路之间进行,因为电源电平太大,一种方式是数百伏,另一种方式是几伏。两种非常不同的电源无法共享。    电路与强电有关。人体接触可能会导致触电...

04/16
2021

   为什么在电路中使用光耦器件?    要求电隔离。在A和B电路之间,进行信号的传输,但是两个电路之间,由于供电水平过于悬殊,一路为数百伏,另一路只有几伏,两种差别很大的电源,不能共享。    线路与强电有关,人体接触有触电危险,应将其...

04/15
2021

   光耦继电器以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使...

04/14
2021

   用来传送模拟信号的光耦,其发光器件是二极管,光接收器是光敏三极管。当有电流通过LED时,就会形成一个光源,这个光源照射在感光三极管的表面,从而使感光三极管产生集电极电流,这个电流的大小与光的强度成正比,也就是正流通过二极管的电流的大...

上一页 1 2 3
...
下一页
Structure and operational principle of Photrelays

Product line up

A PhotoRelays is a semiconductor relay with an LED as an input and MOSFET as an output.
It is used in various fields to improve device reliability and reduce size.






  • img01.jpg


  • (1)LED (light emitting diode)

  • (2)Photodiode dome array (PDA)

  • (3)MOS FET





、img02.jpg



  • (1)The LED lights when the current is connected at the input side.

  • (2)The light sent by the LED will be converted into voltage again when it is received by the photodiode .

  • (3)This voltage will be a gate voltage to drive MOS FET via control circuit.



Advantages of PhotoRelays


Obviously the PhotoRelays differ from the conventional electro-mechanical relays.
PhotoRelays are classified to semiconductor relays that have no moving contact, therefore they are superior to conventional electro-mechanical relays in life-expectance and reliability of contacts, operation speed, and their sizes.

But they also distinguish themselves from other switching solutions that utilize photo-couplers, photo-transistors etc.. PhotoRelays have MOSFET for output, therefore they are the most suitable devices for small analog signal switching.


Compared with Electro-Mechanical Relays
have moving contact:
Compared with SSR (Solid State Relays)
have phototriac for output:
●Longer lifetime (No limit on mechanical and electrical lifetime)
●Higher-speed and high-frequency switching
●Higher sensitivity (less power consumption)
●Smaller size
●Less contact problems such as arcs, bounce, and noise
●More resistant to vibration and impact
●No limitation for the mounting direction
●Able to control miniature analog signal
●Applicable to both AC/DC
●More sensibility
●Less leakage current
●Lower offset voltage
●Various contact structures such as 2a, 4a, 1b, 2b, and 1a1b in addition to 1a


PhotoRelays Technical Terminology


            1.Technical Terminology   

            2.Reliability tests   


            Here is PDF of this page.   

1. Technical Terminology


Term
Symbol
Description

Input
LED forward current
IF
Current that flows between the input terminals when the input diode is forward biased.

LED reverse voltage
VR
Reverse breakdown voltage between the input terminals.

Peak forward current
IFP
Maximum instantaneous value of the forward current.

LED operate current
IFon
Current when the output switches on (by increasing the LED current) with a designated supply voltage and load connected between the output terminals.

LED turn off current
IFoff
Current when the output switches off (by decreasing the LED current) after operating the device with a designated supply voltage and load connected between the output terminals.

LED dropout voltage
VF
Dropout voltage between the input terminals due to forward current.

Power dissipation
Pin
Allowable power dissipation between the input terminals.
Output
Load voltage
VL
Supply voltage range at the output used to normally operate the PhotoRelays.    Represents the peak value for AC voltages.

Continuous load current
IL
Maximum current value that flows continuously between the output terminals of the PhotoRelays under designated ambient temperature conditions. Represents the peak value for AC current.

On resistance
Ron
Obtained using the equation below from dropout voltage VDS
(on) between the output terminals (when a designated LED current is made to flow through the input terminals and the designated load current through the output terminals.)
    Ron
= V
DS
(on)/I
L

Off state leakage current
ILeak
Current flowing to the output when a designated supply voltage is applied between the output terminals with no LED current flow.

Power dissipation
Pout
Allowable power dissipation between the output terminals.

Open-circuit output voltage
Voc
Voltage required for driving a MOSFET

Short-circuit current
Isc
Current that is output from the driver when the input is turned on
Electrical    characteristics
Turn on time
Ton
Delay time until the output switches on after a designated LED current is made to flow through the input terminals.

Turn off time
Toff
Delay time until the output switches off after the designated LED current flowing through the input terminals is cut off.

I/O capacitance
Ciso
Capacitance between the input and output terminals.

Output capacitance
Cout
Capacitance between output terminals when LED current does not flow.

I/O isolation resistance
Riso
Resistance between terminals (input and output) when a specified voltage is applied between the input and output terminals.

Total power dissipation
PT
Allowable power dissipation in the entire circuit between the input and output terminals.

I/O isolation voltage
Viso
Critical value before dielectric breakdown occurs, when a high voltage is applied for 1 minute between the same terminals where the I/O isolation resistance is measured.
Ambient    temperature
Operating
Topr
Ambient temperature range in which the PhotoRelays can operate normally with a designated load current conditions.

Storage
Tstg
Ambient temperature range in which the PhotoRelays can be stored without applying voltage.
Max. operating frequency

Max. operating frequency at which a PhotoRelays can operate normally when applying the specified pulse input to the input terminal



2. Reliability tests


Classification
Item
Condition
Purpose
Life tests
High temperature storage test
Tstg
(Max.)
Determines resistance to long term storage at high temperature.

Low temperature storage test
Tstg
(Min.)
Determines resistance to long term storage at low temperature.

High temperature and high humidity storage test
85°C
185°F, 85%R.H.
Determines resistance to long term storage at high temperature and high humidity.

Continuous operation life test
VL
= Max., I
L
= Max.,
    IF
= Recommended LED forward current
Determines resistance to electrical stress (voltage and current).
Thermal    environment    tests
Temperature cycling test
Low storage temperature (Tstg
Min.)
    High storage temperature (TstgMax.)
Determines resistance to exposure to both low temperatures and high temperatures.

Thermal shock test
Low temperature (0°C)
(32°F),    High temperature (100°C)
(212°F)
Determines resistance to exposure to sudden changes in temperature.

Solder burning resistance
260±5°C
500±41°F, 10 s
Determines resistance to thermal stress occurring while soldering.
Mechanical    environment    tests
Vibration test
196 m/s2
{20 G}, 100 to 2,000 Hz*1
Determines the resistance to vibration sustained during shipment or operation.

Shock test
9,800 m/s2
{1,000 G} 0.5 ms*2;
    4,900 m/s2
{500 G} 1 ms
Determines the mechanical and structural resistance to shock.

Terminal strength test
Determined from terminal shape and cross section
Determines the resistance to external force on the terminals of the PhotoRelays mounted on the PC board while wiring or operating.

Solderability
245°C
473°F
3 s (with soldering flux)
Evaluates the solderability of the terminals.


*1 10 to 55 Hz at double amplitude of 3 mm for Power PhotoRelays.    *2 4,900 m/s2, 1 ms for Power PhotoRelays.



光耦继电器

光耦继电器是固态继电器的一种。英文是Solid State Optronics Relay。


一般继电器都是机械触点,靠通电流过线圈变成有磁性的磁铁吸合触点,从而控制开光状态。而光耦继电器工作原理类似于光耦,是由微电子电路,分立电子器件,电力电子功率器件组成的无触点开关。用隔离器件实现了控制端与负载端的隔离。固态继电器的输入端用微小的控制信号,达到直接驱动大电流负载。光耦继电器归于固态继电器,一般电磁继电器靠电流经过线圈使铁芯变成有磁性的磁铁吸合衔铁,从而使相关的触点动作操控负载的通断,而光耦继电器没有触点,其工作原理与光耦有点类似。光耦继电器为AC/DC并用的半导体继电器,指发光器件和受光器件一体化的器件。输入侧和输出侧电气性绝缘,但信号可以通过光信号传输。其内部的发光二极管是用来向光电元件放射光线的,光电元件接受光线并控制输出场效应管导通或截止。光耦继电器还有另一种可控硅整流管(SCR)输出,它的负载电流比场效应管更大,后者可达到数安培,而前者可达到几十安培。相对于电磁继电器,光耦继电器由于没有触点引起的磨损,使用寿命是无限的,同时也具有无震动、无切换声音等特性,与电磁继电器一样可控制各种负载(灯泡、发光二极管、加热器、马达等)。


光耦继电器有无机械触点,长寿命,低动作电流,高隔离电压,高速切换。低泄漏电流,交直流兼用。广泛用于测量仪器,通讯设备,办公自动化。在选用继电器时,最重要的指标是所选继电器的触点电流和电压,以及控制继电器导通开断的信号的电流和电压大小。在使用时,小功率的继电器一般直接焊接在电路板上,中大功率的继电器一般会安装在继电器座上,依据需要冉将继电器座安装在标准导轨上。由于继电器容易产生火花,因此在较大的功率的时候,建议考虑使用固态继电器、交流接触器等。通信用继电器将在今后继续增长,占到全球继电器市场的1/4。高频继电器是其发展的主要方向,在电信领域、无线通信、宽带输送接入等需求的推动下,已成为机电式继电器更新换代的新平台和下一代通信技术加速完善的助推器。体积更小,适用于表面装贴,高可靠,抗干扰性能优良的通信继电器需求旺盛;未来5G发展所需用的新型通信继电器将成为其发展主流。第四代通信继电器技术已日渐成熟,第三代移动通信的展开,为其提供良好的市场前景。光继电器/微电子继电器是电子产品向数字化、自动化、超小型化方向发展所必需的。


光继电器/微电子继电器由于其泄露率小、隔离性能好、输出特性稳定优良等优点,其应用领域在不断扩大。适用于“物联网”的光继电器由于其高灵敏性、高可靠性而成为优选产品,将会是下一代继电器发展的重要方向。



会员登录
登录
其他帐号登录:
我的资料
留言
回到顶部